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ABSTRACT: A method of differential geometry is applied to study the transition between regular and

Collective Model of atomic nuclei. The Hamiltonian of the system is expressed in terms of the curvature
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Collective Model of atomic nuclei. The Hamiltonian of the system is expressed in terms of the curvature

a simple algebra without the need of solving differential equations, it is possible to find the energy

geometrical method is in agreement with a careful numerical analysis of regularity based on the measuregeometrical method is in agreement with a careful numerical analysis of regularity based on the measure

that the condition of stability corresponds with the changes in the shape of the boundary of the potential

Geometrical method Geometric Collective
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FIGURE 2: Complete map of classical chaos in the GCM, and selected Poincaré sections. The fraction of regularity f
reg

is

order, violet = complete chaos). The vertical axis corresponds to the absolute energy (split to parts E < 0 in linear scale andorder, violet = complete chaos). The vertical axis corresponds to the absolute energy (split to parts E < 0 in linear scale and

The horizontal axis displays parameters A and B (the parameterization changes at white thick lines). The dashed green line

between deformed and spherical ground-state shapes. The black line corresponds to the convex-concave (thick lower part)

higher part) transition in the shape of the kinematically accessible area. Note that the lower part equals to thehigher part) transition in the shape of the kinematically accessible area. Note that the lower part equals to the

determined with the geometric method. The yellow lines indicate the global minimum and the saddle point (E < 0),

minimum (E > 0) of the potential. Three selected Poincaré sections are taken from the places of the map where the unstable

supposedly stable region (panels a, d) or vice versa (panels b, c). Each section shows in total 50 thousand passages of 50supposedly stable region (panels a, d) or vice versa (panels b, c). Each section shows in total 50 thousand passages of 50

plane in the phase space (the scales of x and p
x
axes are suppressed). Points corresponding with regular (chaotic) trajectories
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FIGURE 4. Space distribution of the negative eigenvalues of the matrix V at various energies and at A = -1, B = 1.09. The

red (blue) dashed line encircles the region where the smaller (larger) eigenvalue is negative. An occurrence of a

negative eigenvalue inside the kinematically accessible area (bounded by the black solid curve) indicates the instability

x

negative eigenvalue inside the kinematically accessible area (bounded by the black solid curve) indicates the instability

of the motion (see Fig. 5). Note that the passage of a negative eigenvalue region through the border of the accessible

area makes the border concave.
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and chaotic dynamics in the classical version of the Geometric

curvature associated with a Riemannian metric tensor and, usingcurvature associated with a Riemannian metric tensor and, using

energy where unstable motion appears. We show that the

measure calculated from Poincaré sections. It is also observedmeasure calculated from Poincaré sections. It is also observed

potential at a given energy (kinematically accessible region).

Collective Model Results and Discussion

FIGURE 1: The plane of deformation

Conclusions and Outlook

FIGURE 1: The plane of deformation

parameters (β, γ) or (x, y) with images of

intrinsic shapes. Two classical trajectories at

-1, B = 1.09, C = 1 and E = 0 (black and-1, B = 1.09, C = 1 and E = 0 (black and

green curve) represent examples of regular

chaotic vibrations.
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FIGURE 3: f
reg

dependence on energy E. This figure is a special cut of Fig. 2 at A = -1

and B = 1.09. The red points show eight distinct energies important for the stable-

the stable-unstable transition

), and the local maximum and

unstable motion penetrates into the

50 trajectories through the y = 0 and B = 1.09. The red points show eight distinct energies important for the stable-

unstable evolution, discussed in Figs. 4 and 5.

50 trajectories through the y = 0

trajectories are painted in black (red).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 5. Changes in Poincaré sections when passing the convex-concave-convex transition in the boundary of the

kinematically accessible region. The labels of the panels correspond to Fig. 3. One observes that deeply in the stablekinematically accessible region. The labels of the panels correspond to Fig. 3. One observes that deeply in the stable

region (panel a, E = -1) the motion is fully regular. At the stable-unstable boundary line, a small chaotic region is already

present. Panel (g) shows the situation when the border of the kinematically accessible area becomes convex again,present. Panel (g) shows the situation when the border of the kinematically accessible area becomes convex again,

however the unstable motion persists due to the permanence of the negative eigenvalues inside. An unexpectedly

fully regular motion is observed in panel (h) (see the noticeable “veins of regularity” in Fig. 2).


