1 GCM adapted for the study of variable rigidity

1.1 Hamiltonian

$$H = T + V = \frac{1}{2K} \left(\pi_{\beta}^{2} + \frac{1}{\beta^{2}} \pi_{\gamma}^{2} \right) + A\beta^{2} + B\beta^{3} f(\gamma) + C\beta^{4}$$
(1)

A, B, C, K are adjustable parameters (with the same meaning as in the GCM). The function $f(\gamma)$ is imposed to have the following properties:

- 1. $f(\gamma)$ is analytic and periodic with the period 2π : $f(\gamma) = f(\gamma + 2j\pi)$.
- 2. On the interval $[0, 2\pi)$, $f(\gamma)$ has only one minimum $f(\gamma_{\min}) = -1$ and one maximum $f(\gamma_{\max})=1$.
- 3. The range of values of $f(\gamma)$ is [-1, 1].
- 4. The function is symmetric around the minimum:

$$f(\gamma_{\min} + \gamma) = f(\gamma_{\min} - \gamma)$$

The potential given by (1) has two minima at

$$\beta_1 = 0 \tag{2}$$

$$\beta_2 = \frac{3B + \sqrt{9B^2 - 32AC}}{8C}, \gamma_{\min} \qquad (deformed) \tag{3}$$

and a barrier between them at

$$\beta_B = \frac{3B - \sqrt{9B^2 - 32AC}}{8C} \tag{4}$$

provided that $A, B, C > 0, 9B^2 > 32AC$.

The spherical–deformed shape phase transition occurs for $B^2 = 4AC$. On the phase transition, both minima have the same depth $\bar{V}(\bar{\beta}_1 = 0) = \bar{V}(\bar{\beta}_2 = \sqrt{A/C}) = 0^1$ and they are separated by the barrier $\bar{V}(\bar{\beta}_B = \frac{1}{2}\sqrt{\frac{A}{C}}) = A^2/16C$. The Taylor expansion at the deformed minimum in the direction β is

$$\bar{V}(\beta) = A(\beta - \bar{\beta}_2)^2 + O(\beta - \bar{\beta}_2)^3.$$
 (5)

By comparing the quadratic term with the Hamiltonian of the harmonic oscillator, the frequency of small β vibrations is

$$\bar{\Omega}_{\beta} = \sqrt{\frac{2A}{K}},\tag{6}$$

where K is the mass parameter of the Hamiltonian. We will be interested in the ratio of β and γ frequencies (the "rigidity ratio") defined as

$$\bar{R} = \frac{\Omega_{\gamma}}{\bar{\Omega}_{\beta}},\tag{7}$$

where

¹Quantities expressed on the phase transition $B^2 = 4AC$ are marked with the bar in the whole text.

- 1. R < 1 for γ -soft cases,
- 2. R > 1 for γ -rigid cases.

Note, however, that in general this ratio changes when one moves out from the critical point. This will be discussed briefly in Sec. 1.4

1.2 Function $f(\gamma)$

1.2.1 Choice 1

$$f_r^{(1)}(\gamma) = 2\left(\frac{\cos\gamma + 1}{2}\right)^r - 1$$
 (8)

Figure 1: Potential for Choice 1 of the γ dependence.

Function $f_r^{(1)}$ and the potential \overline{V} are shown in Fig. 1. If r > 1, function $f_r^{(1)}$ makes the potential $V \gamma$ -soft with the deformed minimum at $\gamma = \pi$. A γ -rigid case is obtained simply by taking the opposite function $-f_r^{(1)}$, which can effectively be done by the transformation $B \to -B$. In this case the deformed minimum sits at $\gamma = 0$.

r		1	$\cos\gamma$	$\cos 2\gamma$	$\cos 3\gamma$	$\cos 4\gamma$	$\cos 5\gamma$	$\cos 6\gamma$	$\cos 7\gamma$
1	1		1						
2	$\frac{1}{4}$	-1	4	1					
3	$\frac{\overline{1}}{16}$	-6	15	6	1				
4	$\frac{1}{64}$	-29	56	28	8	1			
5	$\frac{1}{256}$	-130	210	120	45	10	1		
6	$\frac{1}{1024}$	-562	792	495	220	66	12	1	
7	$\frac{1}{4096}$	-2380	3003	2002	1001	364	91	14	1

Table 1: Explicit expressions for the first 7 functions $f_r^{(1)}(\gamma)$ with integer r. An example how to read in the table: $f_2^{(1)} = 1/4(-1 + 4\cos\gamma + \cos 2\gamma)$.

Table 1 gives the explicit expressions for a few of the lowest integer values of r.

A disadvantage of the function (8) is that in the soft case for integer $r \ge 2$, it does not have the quadratic term in the Taylor series at the minimum (instead the minimum is approximated by a quartic function or a function of even higher order). In the rigid case, however, the quadratic term in the expansion exists and the potential (1) in the γ direction can be approximated as

$$\bar{V}^{(1)\text{rigid}}(\gamma) = \frac{A^2}{C}r\gamma^2 + O(\gamma)^3.$$
(9)

Hence the frequency of small γ vibrations is

$$\bar{\Omega}_{\gamma}^{(1)\text{rigid}} = \sqrt{\frac{2A^2}{CK\bar{\beta}_2^2}}r = \sqrt{\frac{2A}{K}r}$$
(10)

and the rigidity ratio

$$\bar{R}^{(1)\text{rigid}} = \sqrt{r} \tag{11}$$

(it is displayed in Fig. 2).

Figure 2: Rigidity ratio for integer r in the rigid case (Choice 1).

1.3 Choice 2

Figure 3: Potential for Choice 2 of the γ dependence.

Function $f_r^{(1)}$ and the potential \overline{V} are shown in Fig. 1. If r > 1, function $f_r^{(1)}$ makes the potential $V \gamma$ -soft with the deformed minimum at $\gamma = \pi$. A γ -rigid case is obtained simply by taking the opposite function $-f_r^{(1)}$, which can effectively be done by the transformation $B \to -B$. In this case the deformed minimum sits at $\gamma = 0$.

Table 1 gives the explicit expressions for a few of the lowest integer values of r.

Function $f_r^{(2)}$ and the potential \bar{V} are shown in Fig. 3. Table 2 gives the explicit expressions for the lowest integer values of r.

The function covers again both γ -soft and -rigid cases in the same manner as is described in the previous Subsection. Its expansion in the deformed minimum has the quadratic term

r		1	$\cos\gamma$	$\cos 2\gamma$	$\cos 3\gamma$	$\cos 4\gamma$	$\cos 5\gamma$	$\cos 6\gamma$	$\cos 7\gamma$
1	1		1						
2	$\frac{1}{12}$	-1	12	1					
3	$\frac{1}{112}$	-18	111	18	1				
4	$\frac{1}{960}$	-221	936	220	24	1			
5	$\frac{1}{7936}$	-2310	7570	2280	365	30	1		
6	$\frac{1}{64512}$	-22162	59976	21615	4500	546	36	1	
7	$\frac{1}{520192}$	-202020	470267	194166	49161	7812	763	42	1

Table 2: Explicit expressions for the first 7 functions $f_r^{(2)}(\gamma)$ with integer r. An example how to read in the table: $f_2^{(1)} = 1/12(-1+12\cos\gamma+\cos 2\gamma)$.

in both cases: in the γ -soft case

$$\bar{V}^{(2)\text{soft}}(\gamma) = \frac{A^2}{C} \frac{r}{2^r - 1} (\gamma - \pi)^2 + O(\gamma - \pi)^3$$
(13)

$$\bar{\Omega}_{\gamma}^{(2)\text{soft}} = \sqrt{\frac{2A}{K} \frac{r}{2^r - 1}} \tag{14}$$

$$\bar{R}^{(2)\text{soft}} = \sqrt{\frac{r}{2^r - 1}},$$
(15)

and the $\gamma\text{-rigid}$ case

$$\bar{V}^{(2)\text{rigid}}(\gamma) = \frac{A^2}{C} \frac{r}{2} \frac{2^r}{2^r - 1} \gamma^2 + O(\gamma)^3$$
(16)

$$\bar{\Omega}_{\gamma}^{(2)\text{rigid}} = \sqrt{\frac{2A}{K} \frac{r}{2} \frac{2^r}{2^r - 1}}$$
(17)

$$\bar{R}^{(2)\text{rigid}} = \sqrt{\frac{r}{2} \frac{2^r}{2^r - 1}},$$
(18)

(displayed in Fig. 4).

Figure 4: Rigidity ratio for integer r (Choice 2).

1.4 Comments on the functions

- 1. Choice 2 gives smaller rigidity ratio in the rigid case.
- 2. If r = 1, which means $f(\gamma) = \cos \gamma$, then potential \bar{V} is symmetric at the point of the barrier $\bar{\beta}_B$:

$$\bar{V} = A\beta^{2} + \sqrt{4AC}\beta^{3}\cos\gamma + C\beta^{4}
= A\beta^{2} + \sqrt{4AC}\beta^{2}x + C\beta^{4}
= A\left[\left(x' - \frac{1}{2}\sqrt{AC}\right)^{2} + y^{2}\right]\left(A + \sqrt{4AC}\right) + C\left[\left(x' - \frac{1}{2}\sqrt{AC}\right)^{2} + y^{2}\right]^{2}
= \frac{1}{16C}\left[A^{2} + 8AC\left(-x'^{2} + y^{2}\right) + 16C^{2}\left(x'^{2} + y^{2}\right)^{2}\right]$$
(19)

 $(x' = x - \overline{\beta}_B)$ that is indeed even in both x' and y. The potential is plotted in Fig. 5.

Figure 5: Demonstration of the symmetry of potential \overline{V} with $f(\gamma) = \cos \gamma$ at the critical point.

3. The rigidity ratio R depends on the adjustable parameters A, B, C of the potential. It decreases for A below the critical point and diverges at the antispinodal point (where the deformed minimum disapears). An example is shown in Fig. 6.

1.5 Technical intermezzo: Diagonalization

1.5.1 Basis

The system is diagonalized in the basis

$$|nm\rangle = R_{nm}(\beta)\Phi_m(\gamma) \tag{20}$$

Figure 6: Dependence of the rigidity ratio R on parameter A for C = 1 and $f_r^{(2)}$ with r = 1 (black thick line), $r = 5, 9 \gamma$ -soft (green lines below the black line), and $r = 5, 9 \gamma$ -rigid (blue lines above the black line). The critical point is marked by the red dashed line.

of the 2D harmonic oscillator

$$H_0 = T + V_0 = -\frac{\hbar^2}{2K} \left(\frac{1}{\beta} \frac{\partial}{\partial\beta} \beta \frac{\partial}{\partial\beta} + \frac{1}{\beta^2} \frac{\partial^2}{\partial\gamma^2} \right) + A_0 \beta^2.$$
(21)

where

$$R_{nm}(\beta) = \sqrt{\frac{2kn!}{(n+l)!}} \left(k\beta^2\right)^{l/2} e^{-\frac{1}{2}k\beta^2} L_n^l\left(k\beta^2\right)$$
(22)

$$\Phi_m(\gamma) = \sqrt{\frac{1}{2\pi}} e^{im\gamma} \tag{23}$$

 $(L_n^l$ denotes a Laguerre polynomial, l = |m| and $k = \sqrt{2A_0K/\hbar^2}$). The eigenvalues of (21) are

$$E_{nm}^{(0)} \equiv \langle nm | H_0 | nm \rangle = \hbar \Omega (2n+l+1), \qquad (24)$$

where $\Omega = \sqrt{2A_0/K}$.

1.5.2 Matrix elements

The general expression for the matrix elements are [1]

$$\langle n', m+b|\beta^{a}\cos b\gamma|nm\rangle = \frac{1}{2}\left(1+\delta_{b0}\right)\sqrt{\frac{n'!n!}{(n'+l')!(n+l)!}}\frac{(-1)^{n'+n+a}}{k^{a/2}}$$
$$\sum_{s}\frac{\left[\frac{1}{2}\left(a+l+l'\right)+s\right]!\left[\frac{1}{2}\left(a-\Delta l\right)\right]!\left[\frac{1}{2}\left(a+\Delta l\right)\right]!}{s!(n'-s)!(n'+s)!\left[\frac{1}{2}(a-\Delta l)-n'+s\right]!\left[\frac{1}{2}(a+\Delta l)-n+s\right]!}$$
(25)

where

$$l = |m| \qquad \qquad l' = |m'| \qquad \qquad \Delta l = l' - l \qquad (26)$$

and the limits of the summation are

$$\max\left\{0, n' - \frac{1}{2}(a - \Delta l), n - \frac{1}{2}(a + \Delta l)\right\} \le s \le \min\left\{n', n\right\} \qquad \text{for } a + b \text{ even},$$
$$0 \le s \le \min\left\{n', n\right\} \qquad \text{for } a + b \text{ odd.} \tag{27}$$

It is possible to express the most frequently used matrix elements for the Hamiltonian (1) explicitly:

$$\langle nm|\beta^2|nm\rangle = \frac{1}{k}(2n+m+1) \tag{28}$$

$$\langle n+1, m | \beta^2 | nm \rangle = -\frac{1}{k} \sqrt{(n+1)(n+m+1)}$$
 (29)

$$\langle nm|\beta^4|nm\rangle = \frac{1}{k^2}[n(n-1) + (n+m+1)(5n+m+2)]$$
 (30)

$$\langle n+1,m|\beta^4|nm\rangle = -\frac{2}{k^2}(2n+m+2)\sqrt{(n+m+1)(n+1)}$$
 (31)

$$\langle n+2, m | \beta^4 | nm \rangle = \frac{1}{k^2} \sqrt{(n+m+2)(n+m+1)(n+2)(n+1)}$$
 (32)

The matrix elements of the term proportional to B must be calculated using the general formula (25).

If the indexes $i = \{n, m\}$

$$0 \le n \le N, -M \le m \le M,\tag{33}$$

of the Hamiltonian matrix are ordered in such a way that

$$\dots, i - 1, i, i + 1, \dots, i + N, i + N + 1 \dots$$

= \dots, \{n - 1, m\}, \{n, m\}, \{n, m\}, \{n + 1, m\}, \dots, \{n, m + 1\}, \{n + 1, m + 1\}, \dots (34)

(N, M limit the number of basis states), then the matrix has a band structure with

$$W = ([r] + 1) N + 3(M \mod 2).$$
(35)

superdiagonals ($[\bullet]$ stands here for the nearest lower or equal even number).

1.5.3 Convergence

The convergence depends on the number of basis states given by N, M and on the basis stiffness A_0 . The lower the Planck variable \hbar is and the more the potential V differs from V_0 , the more basis states are needed in order to achieve good convergence.

The system is diagonalized in the triangular basis whose states fulfill the condition

$$2n + |m| + 1 \le \epsilon \tag{36}$$

[instead of the rectangular condition (33) given above]. Tables 3–6 give the best basis configurations for the systems that are studied in the following text. The error δ is defined as

$$\delta = \max_{j} \left\{ \frac{\left(E_{j}^{(\epsilon)} - E_{0}^{(\epsilon)}\right) - \left(E_{j}^{(\epsilon+10)} - E_{0}^{(\epsilon+10)}\right)}{E_{j}^{(\epsilon+10)} - E_{0}^{(\epsilon+10)}} \right\}$$
(37)

where $E_j^{(\epsilon)}$ is the *j*-th eigenvalue of the Hamiltonian matrix with the basis size limited by ϵ . The convergence criteria is assessed as $\delta \leq 1 \cdot 10^{-2}$.

A	A_0	ϵ	δ
0.5	0.3	50	$1.0 \cdot 10^{-4}$
0.4	0.18	60	$2.7 \cdot 10^{-6}$
0.3	0.08	70	$5.5 \cdot 10^{-4}$
0.25	0.06	80	$6.6 \cdot 10^{-3}$
0.2	0.06	100	$5.7 \cdot 10^{-3}$
0.15	0.07	120	$5.1 \cdot 10^{-3}$
0.1	0.07	140	$4.8 \cdot 10^{-3}$
0	0.07	160	$8.6 \cdot 10^{-3}$

Table 3: Basis parameters for f_1 , $\hbar = 0.0015$, 500 well-converging states.

A	A_0	ϵ	δ
0.5	0.25	40	$5.8 \cdot 10^{-3}$
0.4	0.16	50	$1.0 \cdot 10^{-4}$
0.3	0.07	60	$6.4 \cdot 10^{-4}$
0.25	0.05	70	$3.9 \cdot 10^{-3}$
0.2	0.05	90	$3.1 \cdot 10^{-3}$
0.1	0.06	120	$4.1 \cdot 10^{-3}$
0	0.06	140	$4.0 \cdot 10^{-3}$

Table 4: Basis parameters for γ -soft $f_5^{(2)}$, $\hbar = 0.0015$, 500 well-converging states.

A	A_0	ϵ	δ
0.5	0.3	50	$1.2 \cdot 10^{-3}$
0.4	0.18	60	$1.8 \cdot 10^{-4}$
0.3	0.08	70	$5.1 \cdot 10^{-4}$
0.25	0.08	90	$1.4 \cdot 10^{-3}$
0.2	0.08	110	$4.7 \cdot 10^{-3}$
0.1	0.08	140	$1.0 \cdot 10^{-2}$
0	0.08	160	$1.0 \cdot 10^{-2}$

Table 5: Basis parameters for γ -rigid $f_5^{(2)}$, $\hbar = 0.0015$, 500 well-converging states.

A	A_0	ϵ	δ
0.5	0.25	40	$1.0 \cdot 10^{-3}$
0.4	0.16	45	$5.3 \cdot 10^{-4}$
0.3	0.06	50	$2.5 \cdot 10^{-3}$
0.25	0.04	65	$3.4 \cdot 10^{-3}$
0.2	0.05	80	$5.4 \cdot 10^{-3}$
0.1	0.05	100	$1.0 \cdot 10^{-2}$
0	0.05	110	$2.0 \cdot 10^{-3}$

Table 6: Basis parameters for γ -rigid $f_5^{(2)}$, $\hbar = 0.0015$, 500 well-converging states.

1.6 Results

I am calculating the level dynamics for Hamiltonan (1) with $f_r^{(2)}$ and the following values of the adjustable parameters:

$$B = 1$$

 $C = 1$
 $\hbar = 0.0015$
 $D = 500$ (38)

(D is the number of calculated eigenlevels). So far I have finished these cases:

- 1. The basic r = 1 case, $\overline{R} = 1$. The level dynamics is in Fig. 7. At the critical point A = 1/4, 13 states penetrate the barrier.
- 2. The γ -soft r = 5 case, $\bar{R} = \sqrt{\frac{5}{31}} \approx 0.40$, see Fig. 8. At the critical point 28 states pass through the barrier.
- 3. The γ -rigid r = 5 case, $\bar{R} = 4\sqrt{\frac{5}{31}} \approx 1.6$, see Fig. 9. At the critical point 10 states pass through the barrier.
- 4. The γ -soft r = 9 case, $\bar{R} = \frac{3}{\sqrt{511}} \approx 0.13$, see Fig. 10. At the critical point 50 states pass through the barrier.

References

[1] S. Bell, J. Phys. B: Atom. Molec. Phys. 3, 745 (1970).

Figure 7: Level dynamics for the system with $f_1 = \cos \gamma$ angular dependence, B = C = 1, $\hbar = 500$, D = 500 displayed eigenstates. The calculation step is $\Delta A = 0.001$.

Figure 8: The same as in Fig.7, here for the γ -soft case $f_5^{(2)}$.

Figure 9: The same as in Fig.7, here for the γ -rigid case $f_5^{(2)}$.

Figure 10: The same as in Fig.7, here for the γ -soft case $f_9^{(2)}$.